
1. Introduction
River deltas often receive large amounts of nitrate from land-based human activities. Excess nitrate acceler-
ates the development of harmful algal blooms and reduces water quality of the coastal ocean (Diaz & Rosen-
berg, 2008; Rabalais & Turner, 2001; Rabalais et al., 2017). For example, the Gulf of Mexico receives over 1.6 
million metric tons of nitrogen annually through the Mississippi River Delta (Goolsby et al., 1999), contributing 
to an approximate 18,000 km2 seasonal dead zone (Rabalais et al., 1996; Rabelais & Turner, 2001). Similarly, 
the Pearl River Delta experiences annual summertime episodes of hypoxia that span approximately 200 km2 due 
to abundant inorganic nitrogen input (Dai et al., 2006; Wang et al., 2018), and the eastern Niger Delta is experi-
encing a declining capacity to support fish and aquatic grass habitats due to high levels of nitrate sourced from 
sewage discharge (Ezekwe & Edoghotu, 2015). Seeing that most global freshwater passes through deltas before 
discharging to the coast (Caldwell et al., 2019; Nienhuis et al., 2020; Syvitski & Saito, 2007), it is important to 
understand how deltas impact water chemistry.

Deltas modify nitrate concentrations of water by physical and biochemical processes acting in distributary chan-
nels and islands (DeLaune et al., 2005; Friedrich et al., 2003; Hiatt et al., 2018; Lane et al., 2003). Denitrification, 
an anaerobic, microbially mediated process that converts nitrate to elemental nitrogen (or nitrous oxide), is the 
dominant pathway of permanent nitrogen removal in coastal settings (Lane et al., 2003; Whitney et al., 1981). 
Other common and temporary removal pathways include nitrate assimilation by plants (Matheson et al., 2002; 
Kreiling et al., 2011), dissimilatory reduction of nitrate to ammonium (Burgin & Hamilton, 2007; Tiedje, 1988), 
and anaerobic ammonium oxidation (Jetten et al., 1998; Rysgaard et al., 2004).

Evidence suggests that most nitrate removal in deltas occurs in densely vegetated wetlands (DeLaune et al., 2005; 
Lane et al., 2003; Leopold, 1970), which are associated with shallowly submerged delta islands as opposed to 
deeper, open-water embayments and channels (Carle et al., 2014, 2015; Ma et al., 2018). For example, in Wax 
Lake Delta, 73% of the nitrate that is removed from surface water is associated with shallowly inundated island 
areas (Hiatt et al., 2018). Knights et al. (2020) showed that submerged island areas with denser vegetation have 
greater nitrate processing rates, and Henry and Twilley (2014) demonstrated a positive correlation between delta 
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island age and nitrate removal. Both these studies demonstrate the potential for more developed soils and vegeta-
tion communities on older deltaic islands to remove nitrate, given adequate flow of water and nutrients between 
areas of fast transport (channels) and high reactivity (submerged islands) (Powers et al., 2012). However, the con-
nectivity of biogeochemically “hot” wetlands to nutrient sources entering at the delta head is not well constrained 
(DeLaune et al., 2005; Hiatt et al., 2018) and this connectivity will vary with delta morphology. Connectivity on 
Wax Lake Delta strongly influence sediment transport pathways and deposition (Olliver & Edmonds, 2021) and 
likely impacts nitrate retention. To improve understanding of nitrate retention in deltas, it is necessary to under-
stand how the extent of hydrologic connectivity—as controlled by delta geomorphology—influences removal in 
deltas.

In general, the transport of water and nitrate within deltas depend on morphologic characteristics such as topset 
slope, river bifurcation geometry, channel planform and cross-sectional geometry, and the structure of the dis-
tributary network (Bolla Pittaluga et al., 2003; Carlson et al., 2018; Edmonds and Slingerland., 2008; Tejedor 
et al., 2016), though flow also varies with vegetation, tides, and wind (Nepf, 2012; Buschman et al., 2010; Salles 
et al., 2015). The structure of the distributary network is of particular importance to nitrate removal because 
this sets the size of islands within the delta and their inundation dynamics. The morphology of deltas has been 
studied for several decades (Galloway, 1975), but only recent advances in both remote sensing and data analysis 
have led to new morphometrics for characterizing delta shape and the organization of their channel networks that 
may hold insight into the potential for deltas to retain nutrients. For instance, shoreline characteristics such as 
shoreline length and delta front rugosity (shoreline smoothness or sinuosity) are important descriptors of deltaic 
complexity, influenced in part by grain size distribution (Caldwell & Edmonds, 2014; Wolinsky et al., 2010; Yu 
et al., 2011). Other shoreline metrics such as discontinuity associated with channel presence have been proposed 
to distinguish tidal, wave, and river-dominated deltas (Geleynse et al., 2012). Quantitative metrics, such as the 
number of channels and channel width distribution, describe transport patterns such as deltaic channel networks 
and subnetworks (Nardin & Fagherazzi, 2012; Piliouras & Rowland, 2020; Syvitski & Saito, 2007) while com-
monly used metrics such as island size distribution and nearest edge distance (proximity of points on islands to 
the nearest channel) (Edmonds et al., 2011; Piliouras and Rowland; 2020) may hold predictive power for a del-
ta's nutrient removal efficiency. Recently, graph-theoretic frameworks quantify delta morphological complexity 
resulting from varying grain sizes in terms of entropy rates, the number of alternative pathways, and channel 
leakage indices (Tejedor et al., 2016, 2017, 2019) allowing for quantitative morphological comparison across 
different deltas.

In this study, we use numerical modeling and a suite of morphometrics to understand the fundamental processes 
controlling nitrate retention and removal potential across morphologically diverse river-dominated deltas. The 
delta topset area, delta topset slope, non-local entropy (nER, Tejedor et al., 2017), the number of alternative path-
ways for discharging water at channel mouths (Nap, Tejedor et al., 2016), and leakage indices between channel 
subnetworks (LI, Tejedor et al., 2016) are the morphometrics examined. We hypothesize that nitrate removal effi-
ciency increases with increasing delta topset area, a measure of the area available for wetland establishment, and 
delta slope, a proxy for the proportion of biological active wetlands present. We further hypothesize that nitrate 
removal efficiency increases with nER, Nap, and LI as the increasingly diverse flow will improve the chances of 
nitrate being exposed to biologically active wetlands. We test the hypotheses with a numerical experiment con-
sisting of six synthetically generated deltas with distinct morphologies (Caldwell & Edmonds, 2014). We also run 
one experiment where we examine changes in nitrate removal across various stages of a single delta's growth. We 
end by using our findings to speculate on potential management practices that may improve removal efficiency 
in newly constructed river-dominated deltas.

2. Methods
2.1. Fluid Flow and Reactive Transport Framework

Model development was performed using Delft3D, a morphodynamic modeling suite with fluid flow, sediment 
transport, and water quality modules (Deltares 2014, 2016). Delft3D has been widely used to simulate flow and 
sediment transport in coastal rivers, estuaries, and deltas (Caldwell & Edmonds,  2014; Edmonds & Slinger-
land, 2007; Lesser et al., 2004; Olliver et al., 2020; Sawyer et al., 2015; Van Maren et al., 2009). The fluid flow 
component solves the 2-D depth-averaged, shallow-water equations for incompressible free-surface flow. The 

 19447973, 2021, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030974 by T

est, W
iley O

nline L
ibrary on [14/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

KNIGHTS ET AL.

10.1029/2021WR030974

3 of 13

equations are appropriate for describing flow in deltas where vertical momentum is relatively small and negligi-
ble (Lesser et al., 2004).

Reactive transport was solved using the unsteady two-dimensional advection-dispersion reaction equation:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+𝐷𝐷𝑥𝑥
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+𝐷𝐷𝑦𝑦
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

− 𝑘𝑘𝜕𝜕 (1)

where C is nitrate concentration in water [M L−3], t is time, and vx and vy are flow velocities in the x and y di-
rections, respectively [L T−1]. Dx and Dy are the hydrodynamic dispersion coefficients in the x and y directions, 
respectively [L2 T−1]. Dx and Dy were chosen as 1 m2s−1 based on validation efforts for a Wax Lake Delta model 
(Supplemental Material). k [T−1] is the first-order nitrate removal rate, equivalent to Vf/h, where Vf is the nitrate 
mass transfer velocity [L T−1], and h is water depth. Equation 1 assumes that nitrate removal proceeds as a lumped 
first-order reaction occurring at the bed due to the combined effects of reactions that remove nitrate from the 
water column (i.e., denitrification, assimilation, and dissimilatory nitrate reduction to ammonium) and processes 
that regenerate it (i.e., nitrification). As removal processes often outweigh regeneration in estuarine environments 
(Delaune et  al., 2005; Seitzinger et  al.,  2006), including Wax Lake Delta (Knights et  al.,  2020), the lumped 
first-order reaction here is represented by a negative term.

Processes that remove nitrate such as autotrophic and heterotrophic uptake, and denitrification tend to occur with-
in biofilms along short flow paths through sediments and on vegetation (Böhlke et al., 2009; Boano et al., 2010; 
Harvey et al., 2013). These inherently three-dimensional processes have commonly been represented as a qua-
si-two-dimensional, thin-film process that occurs at the bed in nutrient transport models for rivers and wetlands 
(Ensign & Doyle, 2006; Wollheim et al., 2006, 2008), and we adopt the same widely used approach. In relatively 
fine-grained deltas where groundwater residence times are long (Shaw et al., 2016 reasonable approximation, 
perhaps even more so than in the coarse-grained stream systems where similar nutrient spiraling models have 
traditionally been applied (Ensign & Doyle, 2006; Wollheim et al., 2006, 2008).

The challenging part of Equation 1 is specifying nitrogen removal rate because removal kinetics vary spatially 
across deltas (Henry & Twilley, 2014; Knights et al., 2020; Li et al., 2020). Knights et al. (2020) showed that sum-
mertime nitrate removal rates on Wax Lake Delta positively correlate with NDVI (a vegetation index), elevation, 
and, to a lesser degree, nitrate concentration. Because vegetation distribution and topography are interrelated in 
deltaic environments (Cahoon et al., 2011; Ma et al., 2018; Olliver & Edmonds, 2017), we parametrize spatially 
distributed nitrate removal kinetics across the synthetic deltas as a function of elevation instead of NDVI, based 
on removal rate estimates from 23 field stations across one island on Wax Lake Delta (Knights et al., 2020):

𝑉𝑉𝑓𝑓 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 (2)

where a is 8.41 m s−1, b is 2.01 m−1, and z is bed elevation in meters referenced to mean lower low sea level 
(MLLW). The coefficient of determination (R2) between Vf and z is 0.63.

Linking nitrate removal rates to elevation is a simplification; removal rates depend on many biogeochemical 
processes controlled by a variety of factors, including sediment grain size, organic matter content, temperature, 
and pH (Dawson & Murphy, 1972; Glass & Silverstein, 1998; Seitzinger, 1994). However, this simplification 
is a reasonable first approximation in river-dominated, sub-tropical deltas, where field data show that elevation 
correlates with nitrate removal rates (see Knights et al. (2020) for a detailed discussion). Given the uncertainties 
of this simplification, and to develop more robust interpretations, we ran replicate versions of all models using 
upper and lower limits of coefficient a (0.5 and 2 times) resulting in average Vf across the six deltas ranging from 
4 to 79 mm hr−1 covering ranges typically observed across stream networks (Ensign & Doyle, 2006; Wollheim 
et al., 2006, 2008). We also present a test case using Wax Lake Delta (Supplemental Material) where we compare 
simulated concentrations from our modeling approach with field observations.

2.2. Synthetic Delta Creation

The simulated deltas were built in Delft3D using lognormal distributions of incoming sediment size with median 
grain diameters (D50) varying from 0.01 to 1 mm, resulting in deltas with unique morphologies (Figure 1). Details 
of the delta modeling are discussed in Caldwell and Edmonds (2014). In brief, delta evolution was simulated in 
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response to river and sediment discharge entering a static body of water that 
was 7.5 km by 5.625 km (model grid cell resolution was 25 m by 25 m). The 
basin initially consisted of a floor with a slope of 0.000375 to the north. The 
initial conduit at the inlet, located on the southern face of the model, was 
250 m wide, 2.5 m deep, and 500 m long with specified incoming water dis-
charge of 1,000 m3 s−1. The west, north, and east boundaries of the domain 
were designated as open with constant water elevation.

Elevation from model output, steady flow fields, and water depths were used 
as inputs to solve the unsteady reactive transport equation (Equation 1) for 
nitrate concentration using the process library configuration in the water 
quality module of Delft3D (Delft3D-WAQ). Concentrations were solved 
until they reached steady state (i.e., no change in concentration with time), 
which typically required 40 model days. Only the final steady concentrations 
were reported. Mass transfer velocities were specified according to elevation 
(Equation 2). Thus, as the delta topography changed with delta growth mass 
transfer velocities changed accordingly. We assume that similar biogeochem-
ical and ecological processes underpin the kinetics of nitrate removal in our 
synthetic deltas (for example, the synthetic deltas are intended to represent 
scenarios with similar temperatures and climates, pH, elevation-dependent 
plant and microbial communities, and other factors that influence nitrate re-
moval kinetics). The river inlet boundary was assigned a specified concen-
tration of 1 mg N L−1 (taken as the median concentration value observed at 
USGS gauge 07381590 on the Lower Atchafalaya at Morgan City rounded to 
the nearest whole number). The distal boundaries were treated as advective 
flux boundaries, as the flow was always directed outward.

2.3. Metrics Controlling Nitrate Removal

Nitrate retention in each delta was calculated as the percent difference be-
tween the mass flux of nitrate entering the model domain through the river 
inlet and the mass flux of nitrate leaving through the distal boundaries. Up-
take length (Sw [L]) represents the distance a nitrate molecule would travel 
in the water column before being processed (Newbold et al., 1981). It is a 
measure of the efficiency of nitrate removal from the water column that has 
been widely used across aquatic environments (Ensign & Doyle, 2006; Mul-

holland et al., 1985; Ye et al., 2017). It is inversely related to the Damkohler number, or the balance between 
downstream transport and biogeochemical demand, through water depth, h. Uptake length was calculated across 
the delta grid as:

𝑆𝑆𝑤𝑤 =
|𝑣𝑣| × ℎ
𝑉𝑉𝑓𝑓

. (3)

Delta topset slope (Caldwell & Edmonds, 2014) was analyzed as an indicator of the elevation range available 
for wetland establishment and its influence on nitrate removal (Cahoon et al., 2011; Carle et al., 2014, 2015; Ma 
et al., 2018). Topset area was calculated to test the effect of increased benthic exposure on removal. Topset area 
was defined as the delta area enclosed upstream by the 0 m elevation contour. The delta network configuration 
as measured by nER and calculated by Tejedor et al. (2015) was analyzed to understand how the diversity of flux 
of bifurcating channels affects removal. Nap and LI (calculated by Tejedor et al., 2017) were used to measure 
how dynamic and topologic channel complexity influences removal, respectively. For every channel mouth, Nap 
describes the total number of possible pathways a parcel of water can take to arrive at the outlet, LI quantifies the 
amount of flux lost from a subnetwork of interest to the rest of the delta through shared bifurcations.

Lastly, to understand how the temporal evolution of a growing delta affects nitrate removal, we simulated reactive 
transport at 9 different time-steps on the synthetic delta simulation created using median grain size of 1.0 mm 

Figure 1. Six synthetic deltas with unique geomorphologies were created 
following Caldwell and Edmonds (2014) by varying the median grain size 
(D50) in incoming sediment. Synthetic deltas here are statistically similar to 
real ones in terms of their shapes and channel network organization (Edmonds 
et al., 2011). Elevations are referenced to mean sea level. Because of transient 
water levels, positive elevations do not necessarily indicate subaerial exposure.
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(D50-1.0 mm, Figure 2). We compared nitrate removal rates with topset area and channel network complexity met-
rics (Nap and LI) over the 9 time-steps. Topset slope and nER were not available for the growing delta simulations.

3. Results
3.1. Static Delta Models

Patterns of nitrate removal were similar across the six synthetic deltas, but the magnitudes of retention varied. 
For example, nitrate levels remained relatively high across all six synthetic deltas but were efficiently processed 
(concentrations approaching 0 mg N L−1) in discrete areas within some of the shallowest water depths (near the 
subaerial portions of deltas, which appear white in Figure 3). On the synthetic delta that was fully submerged 
(Figure 3a), nitrate concentrations nowhere fell below 80% of incoming levels. Nitrate uptake lengths were gener-
ally several times longer than delta lengths in all simulations, especially within channels, indicating little potential 
for removal during transport through the delta. Median uptake lengths were greater than 60 km (Figure 4). Uptake 
lengths were greatest within the channels and least within subaerial regions. Damköhler numbers ranged from 
2.74 × 10−17 (D50 = 0.01) to 964 (D50 = 0.1) across the deltas. Average Damköhler numbers across all deltas were 
less than one indicating the systems were transport dominant (Table 1).

Nitrate removal across the six synthetic deltas ranged from 1.1 to 11 metric tons per day, representing only 
1.3%–13% of incoming nitrate (Table 1), similar to the amount of removal simulated for Wax Lake Delta (Supple-
mental Material). This also compares well with whole stream removal rates of 10% measured in the Elbe River, 
a low-lying eighth order river (Ritz et al., 2018). In general, nitrate removal was positively correlated with delta 
topset slope, nER, and Nap (R

2 of 0.87, 0.91, and 0.84, respectively) (Figure 5). Nitrate removal was negatively 
correlated with LI (R2 of 0.30).

Contrary to our hypothesis, nitrate removal was not positively correlated with topset area of the six different del-
tas, but instead, decreased with increasing area (Figure 5b, R2 of 0.61). This relationship stems from the fact that 

Figure 2. One synthetic delta was created using 1 mm D50. Snapshots of the model at nine timesteps of growth (T1–T9) were 
used to simulate nitrate removal with delta evolution.
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the largest deltas tend to have more submerged, low-lying areas that are inad-
equate to support highly reactive wetlands. In other words, the smaller deltas 
in this study tend to have greater slopes and a greater portion of their topset 
areas characterized by high nitrate removal potential, leading to greater over-
all removal (Figure 5). It is worth noting that the median elevation alone is 
not a good predictor of nitrate removal (Figure 5g) because the median holds 
little information about the distributions of the highest elevations, which are 
the hotspots of greater nitrate demand (Equation 2). Similarly, max elevation 
may represent an extreme of the DEM which is not reflective of the overall 
highs in the wetland. Topset slope is more indicative of these hotspots and 
overall removal (Figure 5a).

3.2. Growing Delta Simulation

The growing delta simulation allowed for comparison of nitrate removal un-
der the same grain size and morphologic characteristics but along a trajectory 
through time. When considering one delta (D50 = 1 mm) where morphology 
evolves in a self-similar way, nitrate removal does increase with delta size as 
expected. The total delta area increased from 2.4 to 6.6 km2 as the synthetic 
delta developed over timesteps 1–9 (Figure  6a). As the delta increased in 
size, nitrate retention increased from 0.47% to 3.2% (Figure 6b). The delta 
also increased in nitrate removal efficiency on an areal basis as the percent of 
nitrate removed per unit area increased from 0.20 (percent removed per m2) 
at timestep 1 to 0.48 at timestep 9, peaking at 0.61 at timestep 8 (Figure 6c). 
In other words, as the delta grew in age and size, it built a larger delta top 
wetland that grew in demand for nitrate. Removal increased linearly with 
Nap, or the number of alternate flow pathways, but there was no correlation 
between nitrate removal and LI.

4. Discussion
4.1. Controls of Nitrate Removal in Simulated Deltas

Simulated deltas with more of their topset areas at or above sea level gener-
ally have greater areas available for dense vegetation establishment and thus 

more biogeochemically active sites for nutrient removal (Figure 7). This is also clearly illustrated by examining 
the least submerged delta, which only removed 2.5% of the incoming nitrate load (1.2%–4.9%, depending on 
Equation 2) (Figure 3a). Densely vegetated, shallow deltaic areas have many biophysical conditions that promote 
various pathways for removal, including direct uptake by plants (Saeed & Sun, 2012) but also indirect effects 
of plant-water-sediment-microbial interactions. For example, more denitrification may occur in microsites on 
plant material in the water column and at the sediment-water interface (Holmes et al., 1996). Plant detritus also 
provides more organic matter that acts as a terminal electron donor for denitrification (Vymazal et al., 1999; 
Weisner et al., 1994), and contributes to the development of soils with high potential respiration rates (Henry & 
Twilley, 2014).

Our model results are relatively robust against uncertainties in nitrate removal kinetics (Equation 2). To check the 
sensitivity of our results to Equation 2, we ran additional simulations where we doubled the relationship between 
the kinetic uptake rate constant and elevation, resulting in average kinetic uptake rates for each delta of 17–79 mm 
hr−1, which approach some of the larger observed values in streams and wetlands (Ensign & Doyle, 2006; Mul-
holland et al., 2009) and are within the range of values observed in subtropical estuaries (Bernot et al., 2003; 
Pina-Ochoa & Álvarez-Cobelas, 2006). This doubling approximately doubled delta-wide removal rates (Table 1) 
yet still only resulted in a modest reduction in nitrate export from the delta (1.3%–13%). We acknowledge that the 
parameterization of Equation 2 warrants further testing, and measurements of reaction kinetics in intertidal loca-
tions and deeper areas like channels and other deltas are important areas for future research. However, we expect 
that the general form of the relationship should hold. After all, several studies have shown that elevation acts as a 

Figure 3. Nitrate concentration remained relatively high (close to inlet 
concentration of 1.0 mg L−1) in all six models. Concentrations were lowest 
near subaerial (white) areas. White areas represent dry cells where surface 
water concentrations were not computed because water depth was 0 m. Red 
lines represent geomorphic delta fronts.
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master variable influencing biogeochemical activity (Carle et al., 2015; John-
son et al., 1985; Knights et al., 2020; Ma et al., 2018) because it positively 
correlates with vegetation density (Carle et al., 2015; Ma et al., 2018), and 
nitrate assimilation into plant biomass can account for a substantial portion 
of removal in wetlands (Vymazal, 2011). Also, greater denitrification rates, 
associated with older, more reduced sediment, are found at higher elevations 
on prograding deltas (Henry & Twilley, 2014; Li et al., 2020). Soils near and 
marginally above mean sea level provide ideal locations for highly active 
wetlands to develop (Ma et al., 2018). In contrast, active live vegetation is 
sparser in deep environments of embayments and channels. An important 
percentage of the nitrate removed is likely attributed to plant conversion to 
biomass as spatially distributed nitrate removal rates positively trend with 
vegetation greenness which is greatest along island heads and levees in Wax 
Lake Delta (Knights et al., 2020).

While delta topset slope explains 87% of the variability between retention 
rates (Figure  5a), two deltas with similar slopes had noticeably different 
removal rates of 3.45% and 4.67% (Figures 1c and 1d). These differences 
may be due to the distribution of flow within the two deltas. The delta with 
greater nER (median grain size of 0.25 mm, Figure 1d) was more efficient 
at removing nitrate than the delta with a lower nER (median grain size of 
0.1 mm, Figures 1c and Table 1). Deltas with high nER have channel junc-
tions with more asymmetric flux partitioning (Tejedor et al., 2016), meaning 
that the distribution of nutrient fluxes to the basin should be more diverse 
and heterogeneous. As nER increases, the diversity of nitrate flux to the basin 
increases, which increases the chance that nitrate will be delivered to nitrate 
sinks of high reactivity zones (Powers et al., 2012). This finding also implies 
that similar sloping deltas could have markedly different retention rates if a 
disproportionate amount of flux is routed through high reactivity zones (shal-
lowly submerged island areas, in this case).

Contrary to our hypothesis, removal decreases with delta top area across the 
six morphologically different deltas (Figure 5b). To examine the relationship 
between delta area and nitrate removal independently from the confounding 
effects of elevation-dependent removal kinetics, we repeated our simulations 
using uniform removal kinetics (6.39 mm hr−1, representative of the average 
Vf measured in Wax Lake Delta by Knights et al. (2020)) across each delta 
top, which was defined by the 0 m elevation contour (Olliver et al., 2020) 
and prescribed no reactions outside the delta top. For these simulations, ni-
trate removal does increase with delta area as expected—the larger the delta 
top wetland, the more nitrate it can remove (Figure 5h). Thus, both steeper 
deltas and larger deltas should remove more nutrients, all other factors held 
constant. This relationship is observed in the growing-delta analysis where 
nitrate removal increases with delta age and size as the delta morphotype 
remained relatively consistent with growth (Figure  6). However, there is 
a tradeoff between delta top area and delta top elevation in our synthetic 
deltas and natural deltas with the same sediment volume. This finding has 
important implications for management practices aimed at creating new del-
ta land (Paola et al., 2011). Because nitrate removal potential is greatest in 
high-standing wetlands with older soils (Henry & Twilley,  2014; Knights 
et al., 2020), it could be more efficient from a nutrient management stand-
point to construct smaller deltas with greater proportions of high-standing 
area than larger low-lying deltas.

Figure 4. (a)–(c) Mass transfer velocity (Vf) (d)–(f) and corresponding uptake 
length for deltas formed under fine, intermediate, and coarse grain sizes. 
Despite the increase in the area of highly reactive wetlands (high k) with 
grain size, uptake length (Sw) remains large across all deltas, showing a lack 
of efficient removal over the delta length scale. White areas represent dry 
(depth = 0 m) locations where k and Sw were not calculated.

D50 
(mm) Slope

Area 
(km2) nER Nap LI

aTotal 
removal (%)

Mean uptake 
length (km)

0.01 0.00081 7.6 0.83 24 0.20 2.5 (1.3–4.9) 1.8 × 1012

0.05 0.00053 9.5 0.69 7 0.16 3.8 (2.0–7.1) 3.7 × 1011

0.1 0.00048 1.0 0.76 4 0.22 3.5 (1.8–6.7) 2.1 × 1012

0.25 0.00049 8.6 0.67 2 0.22 4.7 (2.4–9.0) 2.5 × 1011

0.5 0.00039 10.6 0.69 1 0.23 4.2 (2.1–8.1) 9.0 × 108

1 0.00016 11.2 0.67 1 0.29 6.7 (3.4–13) 4.7 × 105

Note. All simulations were run at steady state an incoming discharge of 
1,000 m3 Day−1 and nitrate flux of 86.4 tons Day−1.
aRanges based on 0.5 and 2 times coefficient a (Equation 2) are in parentheses.

Table 1 
Geometrics of Synthetic Deltas and Nitrate Removal
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4.2. Coastal Water Quality Implications

For all deltas in this study, nitrate retention rates amounted to a small por-
tion of the incoming load under the long-term steady discharge conditions 
that created these deltas. Even when kinetic rate constants were doubled, 
removal roughly doubled and still represented a small fraction of the incom-
ing nitrate load (4.9%–13%, Table  1). Similarly, in our test case for Wax 
Lake Delta (Supplemental Material), only 2.1%–6.6% of the incoming nitrate 
load was removed. Removing nitrate requires water to be moved to shallow, 
biogeochemically reactive areas (DeLaune et al., 2005; Powers et al., 2012; 
Hiatt et al., 2018). Thus, changing the kinetic uptake rate does not influence 
removal if water is not being transported to those reactive areas (Bernhardt 
et al., 2017). The implication is that river-dominated deltas in temperate re-
gions may have only a modest capacity to buffer nitrate fluxes to the coast 
(Table 1). Low retention rates can be attributed to these deltas being mostly 
transport-dominated (i.e., discharge is generally too great to allow time for 
removal). The few areas such as island levees with very short uptake lengths 
(on the order of tens of meters) cannot contribute much to removal as they 
are not well connected hydrologically to channels where most discharge is 
focused (Powers et al., 2012). As a proof of concept, we simulated one sce-
nario (D50  =  1, Figure  1f) where we drastically increased nitrate removal 
kinetics within the delta top wetland (Vf = 150 mm hr−1 or 25 times the mean 
observed value in Wax Lake Delta) and maintained no reactions in the chan-
nels and portions of the delta below mean sea level. This simulation was not 
designed to replicate realistic removal rates but to give insight into transport 
limitations on removal. Under the extreme conditions of this scenario, all 
nitrate that escaped the channels and entered the wetlands was fully removed 
under the extreme biogeochemical demand that was prescribed outside the 
channels, and no nitrate that remained in the channels was removed. Nitrate 
removal increased from 6.7% to 22.3%, suggesting that at most, only a quar-
ter of flow from channels makes it onto delta islands. This finding aligns well 
with estimates for Wax Lake Delta that 23%–54% of channel flux enters delta 
islands (Hiatt & Passalacqua,  2015; Olliver et  al.,  2020). Even if removal 
kinetics in island retention zones were much greater than in Equation 2, less 
than 25% of nitrate would interact with these hotspots of reactivity unless 
hydrologic connectivity were greater. In river-dominated deltas, the natural 

distribution of flow through channel and island networks may impose fundamental limits on hydrologic connec-
tivity and thus nitrate retention.

4.3. The Role of Sediment Grain Size

Given the importance of the delta elevation profile for nutrient removal, sediment grain size emerges as a key 
parameter that may influence nutrient removal services in deltas. In our simulations, the steepest deltas had 
the coarsest sediments, as expected. Greater bed shear stresses (and thus greater topset slopes) are needed to 
transport coarser material, leading to more aggradation (Parker et al., 1998; Whipple et al., 1998). In contrast, 
fine sediments form gently sloping deltas, even though finer-grained sediment is more cohesive because the low 
settling rate of fine-grained sediment results in greater sediment bypass and more distal deposition (Caldwell & 
Edmonds, 2014). This relationship has important implications for coastal land reclamation projects. To achieve 
better water quality outcomes, river diversions can be designed to divert coarser sediment loads, leading to the 
construction of steeper deltas (Paola et al., 2011).

Another implication is that deltas draining active coastal margins with high relief catchments and presumably 
coarser sediments may have greater nitrate removal potential, all other factors held constant (e.g., temperature, 
plant communities, river discharge, and incoming nitrate concentrations). The Sacramento-San Joaquin River 
delta located at an active margin may fall into this category. Fine-grained, gently sloping deltas in passive margins 

Figure 5. (a), (c), and (d) The percent removal is positively correlated to 
slope, nER, Nap and LI. (b) Percent removed is negatively correlated to delta 
area. (e) There is a weak and negative relationship between LI and removal 
rate. (f) The percent of nitrate removed from each delta increases as median 
grain size increases. (g) There is no correlation with median elevation and 
percent removal (h) * Percent N removed under uniform removal kinetics. 
Removal does increase with area when reaction kinetics are uniform.
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such as the Orinoco River Delta may have comparatively reduced nutrient removal capacity, relative to their size. 
There is a need for more studies to assess nitrate removal in natural deltas around the world to understand how 
their removal efficiencies relate to delta topset slope and grain size, among other morphologic factors.

4.4. Areas for Further Study

The synthetic delta simulations here are simplistic versions of natural deltas and examine only a limited range 
of potential controls on nutrient removal. For example, we examined an incoming nitrate concentration repre-
sentative of mixed upstream land use. The efficiency of nitrate removal in streams and wetlands is inversely pro-
portional to background concentration (Hall et al., 2009; Mulholland et al., 2009; Tank et al., 2008). Therefore, 
removal efficiency in synthetic and natural deltas would likely improve if incoming nitrate concentration were 
reduced, although connectivity may still ultimately limit substantial removal.

Advective nitrate transport along groundwater flow paths is not explicitly modeled in this study, although the 
shallowest, shortest timescales of surface water-groundwater mixing and nitrate removal within the benthic zone 
are implicitly represented in Vf. For example, the chambers used for deriving Vf (Equation 2) were open on the 
bottom to allow some degree of small-scale fluid exchange and nitrate removal immediately beneath the sedi-
ment-water interface. The benthic and hyporheic zones where surface water and groundwater mix are known 
regions of nitrogen processing, especially in the upper several centimeters of sediment where mixing is most 
efficient (Harvey et al., 2013). Longer subsurface flow paths also contribute to nitrate removal (i.e., Duff & Tris-
ka, 1990; Gu et al., 2007; Zarnetske et al., 2011; Kolbjørn Jensen et al., 2017), but a groundwater modeling study 
for synthetic deltas with similar grain size suggests that subsurface residence times and fluxes are too long and 
slow along these flow paths to substantially influence the nitrate budget for surface water (Sawyer et al., 2015). 
Due to the likely limited influence of groundwater flow—outside of small-scale advective exchange that is cap-
tured by the benthic chambers and inherent in Equation 2—we exclude groundwater flow at this stage.

Figure 6. One delta (D50 = 1 mm) was arrested at nine timesteps of growth (T1-T9). (a) Delta area and (b) the percent of 
nitrate removal increases with time. (c) The percent of nitrate removal relative to delta area also increases with time (d) 
Removal rate is positively correlated with number of alternative pathways. (e) There is no correlation between leakage index 
and removal as the delta grows.
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In the model, we manipulate median grain size while keeping all other vari-
ables constant. However, inherent spatial autocorrelations between grain size 
and other environmental variables known to influence removal rates like or-
ganic matter content, permeability, and dissolved oxygen levels likely exists 
(Mulholland et  al., 2008; Seitzinger et  al., 2006). As grain size decreases, 
organic matter content, pH and DO tend to increase, decrease, and decrease, 
respectively. These can have opposing and additive influences on nitrate re-
moval (Milliman, 1994; Strayer et al., 1997), the modeling of such is beyond 
the scope of this study.

The models are most representative of sub-tropical river-dominated deltas 
during summer flow conditions, and removal efficiencies are likely to vary 
over seasons, in tidal- or wave-dominated deltas, or in high-latitude deltas. 
Over seasons, it is unlikely that removal efficiency would increase in winter 
because colder temperatures lead to slower denitrification kinetics (Bachand 
& Horne, 1999; Bremner & Shaw, 1958), and winter senescence results in 
limited assimilation into biomass. At higher latitudes, removal efficiency 
could be lower due to both colder temperatures and permafrost, which can 
restrict liquid water interactions with organic-rich soil. Further analyses of 
other types of deltas under different hydrodynamics are necessary to under-
stand nutrient fate and inform managerial practices.

5. Conclusion
Nitrate retention in river-dominated deltas is likely limited to a small fraction 
of the incoming load (in our simulations, ∼1%–13%). Nitrate uptake lengths 
are several times larger than the delta length scale, indicating that most ni-
trate is transported to sea without removal. High-standing portions of deltas 
with emergent vegetation and well-developed soils play an outsized role in 
nutrient removal, and therefore delta topset slope has a greater influence on 
nitrate removal than any other geometric parameter examined here. These 
results suggest that diverting sediments with a coarser grain size distribution 

should be considered when land reclamation projects intended to improve water quality are a priority. This would 
thereby achieve steeper slopes and greater nitrate removal potential. Future research considering a wider range 
of temporal effects (seasons, floods, and tides) on both reactivity and hydraulic connectivity can improve estima-
tions of nitrate fate in deltas.

Data Availability Statement
Data archiving in HydroShare is underway and will be made public upon acceptance. A temporary copy of our 
data is in the Supporting Information. Additional data for this study is available at Knights (2021).
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